Wheels are Cycle-Antimagic


Abstract:

A simple graph G admits an H-covering if every edge in E(G) belongs to a subgraph of G isomorphic to H. An (a, d)-H-antimagic total labeling of a graph G admitting an H-covering is a bijective function from the vertex set V(G) and the edge set E(G) of the graph G onto the set of integers {1, 2, ..., |V(G)|+|E(G)|} such that for all subgraphs H' isomorphic to H, the sum of labels of all the edges and vertices belonging to H' constitute the arithmetic progression with the initial term a and the common difference d. Such a labeling is called super if the smallest possible labels appear on the vertices. In this paper, we investigate the existence of super cycle-antimagic total labelings of wheel.

Año de publicación:

2015

Keywords:

  • H-covering
  • Wheel
  • Cycle-antimagic labeling
  • (super) (a, d)-H-antimagic total labeling

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

    Áreas temáticas: