A dipolar competitive neural network for video segmentation


Abstract:

This paper present a video segmentation method which separate pixels corresponding to foreground from those corresponding to background. The proposed background model consists of a competitive neural network based on dipoles, which is used to classify the pixels as background or foreground. Using this kind of neural networks permits an easy hardware implementation to achieve a real time processing with good results. The dipolar representation is designed to deal with the problem of estimating the directionality of data. Experimental results are provided by using the standard PETS dataset and compared with the mixture of Gaussians and background subtraction methods. © 2008 Springer-Verlag.

Año de publicación:

2008

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Red neuronal artificial
    • Ciencias de la computación

    Áreas temáticas:

    • Métodos informáticos especiales
    • Ciencias de la computación