Wind turbine gearbox fault diagnosis using SAE-BP transfer neural network


Abstract:

The gearbox is a key component in wind turbines, and the fault diagnosis of gearboxes in wind turbines is a significant process of reliability management. Therefore, a SAE-BP transfer neural network is proposed in this paper for fault diagnosis of gearboxes in wind turbines. The proposed method is conducted by two processes. Firstly, a source task data is served as the training process to pretrain the SAE-BP neural network. The final learned network structure is the transferable weights or parameters that contain the feature information. Then, the learned weights are transferred into a target task with different working and fault conditions as the initial weight of a neural network model. To extract more fault-sensitive features, fast Fourier transform (FFT) is introduced to transform the raw data into a frequency domain. Several comparison experiments are conducted to validate the proposed method, and the results show that the proposed method achieves higher classification accuracy.

Año de publicación:

2019

Keywords:

  • Intelligent fault diagnosis
  • BP algorithm
  • Transfer learning
  • Sparse autoencoder
  • gearbox

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Algoritmo
  • Aprendizaje automático

Áreas temáticas:

  • Física aplicada
  • Métodos informáticos especiales
  • Otras ramas de la ingeniería