Working principles, behavior, and performance of MOEAs on MNK-landscapes
Abstract:
This work studies the working principles, behavior, and performance of multiobjective evolutionary algorithms (MOEAs) on multiobjective epistatic fitness functions with discrete binary search spaces by using MNK-landscapes. First, we analyze the structure and some of the properties of MNK-landscapes under a multiobjective perspective by using enumeration on small landscapes. Then, we focus on the performance and behavior of MOEAs on large landscapes. We organize our study around selection, drift, mutation, and recombination, the four major and intertwined processes that drive adaptive evolution over fitness landscapes. This work clearly shows pros and cons of the main features of MOEAs, gives a valuable guide for the practitioner on how to set up his/her algorithm, enhance MOEAs, and presents useful insights on how to design more robust and efficient MOEAs. © 2006 Elsevier B.V. All rights reserved.
Año de publicación:
2007
Keywords:
- Discrete binary search spaces
- mutation
- MNK-Landscapes
- Recombination
- Multiobjective evolutionary algorithms
- Multiobjective combinatorial optimization
- Evolutionary computations
- drift
- Non-linear multiobjective fitness functions
- Epistasis
- Selection
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Algoritmo
- Algoritmo
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Ciencias de la computación
- Funcionamiento de bibliotecas y archivos