pK<inf>a</inf> modeling and prediction of a series of pH indicators through genetic algorithm-least square support vector regression


Abstract:

The pKa values of a series of 107 indicators have been modeled by means of a quantitative structure-property relationship (QSPR) approach based on physicochemical descriptors and different variable selection and regression methods. A genetic algorithm/least square support vector regression (GA-LSSVR) model gave the most accurate estimations/predictions, with squared correlation coefficients of 0.90 and 0.89 for the training and test set compounds, respectively. The prediction ability of this model was found to be superior to that based on support vector machine regression alone, revealing the important effect of selecting suitable descriptors during a QSPR modeling. Moreover, the GA-LSSVR model showed higher predictive capability than linear methods, demonstrating the influence of nonlinearity on the modeling of pKa values, an extremely useful parameter in the analytical sciences. © 2010 Elsevier B.V.

Año de publicación:

2010

Keywords:

  • GA-LSSVR
  • quantitative structure-property relationships
  • SUPPORT VECTOR MACHINES
  • PH indicators
  • pK a

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Relación cuantitativa estructura-actividad
  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas de Dewey:

  • Química analítica
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 9: Industria, innovación e infraestructura
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 3: Salud y bienestar
Procesado con IAProcesado con IA