δ-Similar elimination to enhance search performance of multiobjective evolutionary algorithms
Abstract:
In this paper, we propose δ-similar elimination to improve the search performance of multiobjective evolutionary algorithms in combinatorial optimization problems. This method eliminates similar individuals in objective space to fairly distribute selection among the different regions of the instantaneous Pareto front. We investigate four eliminating methods analyzing their effects using NSGA-II. In addition, we compare the search performance of NSGA-II enhanced by our method and NSGA-II enhanced by controlled elitism. Copyright © 2008 The Institute of Electronics, Information and Communication Engineers.
Año de publicación:
2008
Keywords:
- δ-similar elimination
- Multiobjective evolutionary algorithms
- Controlled elitism
- Selection
Fuente:
scopus
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Evolución
- Algoritmo
- Algoritmo
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
- Funcionamiento de bibliotecas y archivos