A dual-input multi-label classification approach for non-intrusive load monitoring via deep learning


Abstract:

Non-intrusive load monitoring (NILM) is the process of obtaining appliance-level data from users' total electricity consumption data. These data can be of great benefit, especially in demand response applications. In this paper, a multi-label classification for NILM based on a two-input gated recurrent unit (GRU) is presented. Since the presented method is designed with a multi-label approach, great savings in training time are achieved. While a separate model is trained for each appliance in the literature, only one model is trained in the proposed model. Besides, the model was trained using two different inputs. The first is the total active power value consumed by the whole house. The second input is the Spikes obtained by analyzing this active power consumption. Simply put, spikes are obtained by analyzing the instant power changes in active power. Both inputs are evaluated with a convolutional layer and …

Año de publicación:

2020

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Aprendizaje automático
    • Ciencias de la computación

    Áreas temáticas de Dewey:

    • Ciencias de la computación
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 7: Energía asequible y no contaminante
    • ODS 12: Producción y consumo responsables
    • ODS 9: Industria, innovación e infraestructura
    Procesado con IAProcesado con IA