A dual-mixed approximation for a Huber regularization of generalized p-Stokes viscoplastic flow problems


Abstract:

In this paper, we propose a dual-mixed formulation for stationary viscoplastic flows with yield, such as the Bingham or the Herschel-Bulkley flow. The approach is based on a Huber regularization of the viscosity term and a two-fold saddle point nonlinear operator equation for the resulting weak formulation. We provide the uniqueness of solutions for the continuous formulation and propose a discrete scheme based on Arnold-Falk-Winther finite elements. The discretization scheme yields a system of slantly differentiable nonlinear equations, for which a semismooth Newton algorithm is proposed and implemented. Local superlinear convergence of the method is also proved. Finally, we perform several numerical experiments in two and three dimensions to investigate the behavior and efficiency of the method.

Año de publicación:

2022

Keywords:

  • Viscoplastic fluids
  • Twofold saddle point
  • semismooth Newton methods
  • Dual-mixed methods

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Física aplicada