Tiny and Efficient Model for the Edge Detection Generalization
Abstract:
Most high-level computer vision tasks rely on low-level image operations as their initial processes. Operations such as edge detection, image enhancement, and super-resolution, provide the foundations for higher level image analysis. In this work we address the edge detection considering three main objectives: simplicity, efficiency, and generalization since current state-of-the-art (SOTA) edge detection models are increased in complexity for better accuracy. To achieve this, we present Tiny and Efficient Edge Detector (TEED), a light convolutional neural network with only 58K parameters, less than 0.2% of the state-of-the-art models. Training on the BIPED dataset takes less than 30 minutes, with each epoch requiring less than 5 minutes. Our proposed model is easy to train and it quickly converges within very first few epochs, while the predicted edge-maps are crisp and of high quality. Additionally, we propose a new dataset to test the generalization of edge detection, which comprises samples from popular images used in edge detection and image segmentation. The source code is available in https://github.com/xavysp/TEED.
Año de publicación:
Keywords:
- cnn
- edge detection
- Edge detection
- CNN
- dataset for edge detection
- Lightweight Deep Learning
- UDED
Fuente:
scopus
googleTipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Visión por computadora
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas de Dewey:
- Métodos informáticos especiales
- Ciencias de la computación
- Física aplicada
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 7: Energía asequible y no contaminante