Optimizing Residential Electricity Demand with Bipartite Models for Enhanced Demand Response
Abstract:
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy consumption by flattening the demand curve through demand response programs. Additionally, the Internet of Things (IoT) is integrated as a communication channel to ensure efficient energy management without compromising user comfort. The research evaluates energy resource allocation using bipartite graphs, modeling the generation of energy from renewable and conventional high-efficiency sources. Various case studies analyze scenarios with and without market constraints, assessing the impact of demand response at different levels (5%, 10%, 15%, and 20%). Results demonstrate a significant reduction in reliance on external grids, with optimized energy distribution leading to potential cost savings for consumers. The findings suggest that intelligent demand response strategies can enhance microgrid efficiency, supporting sustainability and reducing carbon footprints.
Año de publicación:
2025
Keywords:
Fuente:
scopus
google
orcidTipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Ingeniería energética
- Optimización matemática
- Política energética
Áreas temáticas de Dewey:
- Economía de la tierra y la energía
- Ciencias de la computación
Objetivos de Desarrollo Sostenible:
- ODS 7: Energía asequible y no contaminante
- ODS 12: Producción y consumo responsables
- ODS 9: Industria, innovación e infraestructura
