Resilient Distribution System Reconfiguration Based on Genetic Algorithms Considering Load Margin and Contingencies


Abstract:

This paper addresses the challenge of restoring electrical service in distribution systems (DS) under contingency scenarios using a genetic algorithm (GA) implemented in MATLAB. The proposed methodology seeks to maximize restored load, considering operational constraints such as line loadability, voltage limits, and radial topology preservation. It is evaluated with simulations on the IEEE 34-bus test system under four contingency scenarios that consider the disconnection of specific branches. The algorithm’s ability to restore service is demonstrated by identifying optimal auxiliary line reconnections. The method maximizes restored load, achieving between 97% and 99% load reconnection, with an average of 98.8% across the four cases analyzed. Bus voltages remain above 0.95 pu and below the upper limit. Furthermore, test feeder results demonstrate that line loadability is mostly below 60% of the post-reconfiguration loadability.

Año de publicación:

2025

Keywords:

    Fuente:

    scopusscopus
    googlegoogle
    orcidorcid

    Tipo de documento:

    Article

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Optimización matemática
    • Algoritmo
    • Algoritmo

    Áreas temáticas de Dewey:

    • Ingeniería y operaciones afines
    • Física aplicada
    • Métodos informáticos especiales
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 9: Industria, innovación e infraestructura
    • ODS 11: Ciudades y comunidades sostenibles
    • ODS 7: Energía asequible y no contaminante
    Procesado con IAProcesado con IA