A fractional order predictive control for trajectory tracking of the ar.drone quadrotor
Abstract:
A fractional-order model predictive control with extended prediction self-adaptive control (FOMPC-EPSAC) strategy is proposed for the AR.Drone quadrotor system. The objective is to achieve an optimal trajectory tracking control for an AR.Drone quadrotor by using a fractional order integral cost function in the conventional MPC-EPSAC algorithm. In addition, a particle swarm optimization (PSO) algorithm is applied to find the optimal weighting matrices, which depend on the terms ($$\alpha $$, $$\beta $$) of the fractional order cost function. Some simulation results show the superiority of FOMPC-EPSAC over conventional MPC-EPSAC with respect to trajectory tracking and robustness under wind disturbances.
Año de publicación:
2021
Keywords:
- Particle swarm optimization (PSO) algorithm
- model pbkp_redictive control (MPC)
- unmanned aerial vehicles (UAVs)
- Fractional Calculus
- Fractional Order Control
Fuente:



Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema de control
- Automatización
Áreas temáticas de Dewey:
- Física aplicada
- Otras ramas de la ingeniería

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 17: Alianzas para lograr los objetivos
- ODS 8: Trabajo decente y crecimiento económico
