A fuzzy clustering based method for the spatiotemporal analysis of criminal patterns


Abstract:

This paper presents a method for analyzing patterns of criminal activity that occur in space and time. The method uses the fuzzy C-means algorithm to cluster criminal events in space. In addition, a cluster reorganization algorithm is included to preserve the order of fuzzy partitions from one time step analysis to another. Order preservation is possible since crime forms relatively stable patterns due to the fixed shape of urban spaces and routine activities of people. The method provides a novel way to analyze criminal directionality, since it generates time series from clustering. A sample database of robberies in San Francisco, USA, is used to test the algorithm. Results show that criminal patterns might be tracked in a simple way.

Año de publicación:

2016

Keywords:

  • Clustering
  • Crime pattern theory
  • Fuzzy Clustering
  • crime analysis
  • Crime

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Crimen
  • Análisis de datos

Áreas temáticas:

  • Otros problemas y servicios sociales
  • Criminología
  • Probabilidades y matemática aplicada