A hybrid scalarization and adaptive ε-ranking strategy for many-objective optimization


Abstract:

This work proposes a hybrid strategy in a two-stage search process for many-objective optimization. The first stage of the search is directed by a scalarization function and the second one by Pareto selection enhanced with Adaptive ε-Ranking. The scalarization strategy drives the population towards central regions of objective space, aiming to find solutions with good convergence properties to seed the second stage of the search. Adaptive ε-Ranking balances the search effort towards the different regions of objective space to find solutions with good convergence, spread, and distribution properties. We test the proposed hybrid strategy on MNK-Landscapes showing that performance can improve significantly on problems with more than 6 objectives. © 2010 Springer-Verlag.

Año de publicación:

2010

Keywords:

    Fuente:

    scopusscopus

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Optimización matemática
    • Optimización matemática
    • Optimización matemática

    Áreas temáticas:

    • Programación informática, programas, datos, seguridad