Application of K-means clustering algorithm to commercial parameters of pleurotus spp. Cultivated on representative agricultural wastes from province of Guayas


Abstract:

Data of the commercial parameters of Pleurotus ostreatus and Pleurotus djamor were analyzed using the data mining technique: K-means clustering algorithm. The parameters evaluated were: biological efficiency, crop yield ratio, productivity rate, nutritional composition, antioxidant and antimicrobial activities in the production of fruit bodies of 50 strains of Pleurotus ostreatus and 50 strains of Pleurotus djamor, cultivated on the most representative agricultural wastes from the province of Guayas: 80% sugarcane bagasse and 20% wheat straw (M1), and 60% wheat straw and 40% sugarcane bagasse (M2). The database of the parameters obtained in experimental procedures was grouped into three clusters, providing a visualization of the strains with a higher relation to each parameter (vector) measured.

Año de publicación:

2021

Keywords:

  • Visualization
  • PLEUROTUS OSTREATUS
  • K-means clustering algorithm
  • PLEUROTUS DJAMOR
  • Commercial parame-ters

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencia agraria

Áreas temáticas:

  • Agricultura y tecnologías afines
  • Huertos, frutas, silvicultura
  • Tecnología alimentaria