Application of artificial intelligence techniques to the study of machine signatures
Abstract:
This paper presents demonstration on the application of artificial intelligence techniques to the study of machine vibration signatures. First, a Self-Organizing Map (SOM) is used to discover cluster information from frequency-domain vibration signatures for the detection and diagnosis of unbalanced rotor and bearing faults. In the next, with further feature extraction in frequency-domain, a 2-dimensional multi-class Support Vector Machine (SVM) is used to predict these fault modes with an error rate of 1.48% over a wide machine operation speed. © 2012 IEEE.
Año de publicación:
2012
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas de Dewey:
- Métodos informáticos especiales

Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 12: Producción y consumo responsables
- ODS 8: Trabajo decente y crecimiento económico
