Approaches for many-objective optimization: Analysis and comparison on MNK-landscapes
Abstract:
This work analyses the behavior and compares the performance of MOEA/D, IBEA using the binary additive ε and the hypervolume difference indicators, and AεSεH as representative algorithms of decomposition, indicators, and ε-dominance based approaches for many-objective optimization. We use small MNK-landscapes to trace the dynamics of the algorithms generating high-resolution approximations of the Pareto optimal set. Also, we use large MNK-landscapes to analyze their scalability to larger search spaces.
Año de publicación:
2016
Keywords:
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Ciencias de la computación