A map approach for ℓ<inf>q</inf>-norm regularized sparse parameter estimation using the em algorithm


Abstract:

In this paper, Bayesian parameter estimation through the consideration of the Maximum A Posteriori (MAP) criterion is revisited under the prism of the Expectation-Maximization (EM) algorithm. By incorporating a sparsity-promoting penalty term in the cost function of the estimation problem through the use of an appropriate prior distribution, we show how the EM algorithm can be used to efficiently solve the corresponding optimization problem. To this end, we rely on variance-mean Gaussian mixtures (VMGM) to describe the prior distribution, while we incorporate many nice features of these mixtures to our estimation problem. The corresponding MAP estimation problem is completely expressed in terms of the EM algorithm, which allows for handling nonlinearities and hidden variables that cannot be easily handled with traditional methods. For comparison purposes, we also develop a Coordinate Descent algorithm for the ℓq-norm penalized problem and present the performance results via simulations.

Año de publicación:

2015

Keywords:

  • Probability density function
  • convergence
  • Signal processing algorithms
  • maximum likelihood estimation
  • Parameter estimation
  • Optimization

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas: