A method for the reduction of the computational cost associated with the implementation of particle-filter-based failure prognostic algorithms


Abstract:

Failure prognostic algorithms require to reduce the computational burden associated with their implementation to ensure real-time performance in embedded systems. In this regard, this paper presents a method that allows to significantly reduce this computational cost in the case of particle-filter-based prognostic algorithms, which is based on a time-variant prognostic update rate. In this proposed scheme, the performance of the prognostic algorithm within short-term pbkp_rediction horizons is continuously compared with respect to the outcome of Bayesian state estimators. Only if the discrepancy between prior and posterior knowledge is greater than a given threshold, it is suggested to execute the prognostic algorithm once again and update Time-of-Failure estimates. In addition, a novel metric to evaluate the performance of any prognostic algorithm in real-time is hereby presented. The proposed actualization scheme is implemented, tested, and validated in two case studies related to the problem of State-of-Charge (SOC) prognostics. The obtained results show that the proposed strategy allows to significantly reduce the computational cost while keeping the standards in terms of algorithm efficacy.

Año de publicación:

2020

Keywords:

  • Online performance assessment
  • Time-of-Failure probability distribution
  • Prognostic algorithms

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación
  • Escritos misceláneos americanos
  • Física aplicada