ArtGAN: Artwork synthesis with conditional categorical GANs


Abstract:

This paper proposes an extension to the Generative Adversarial Networks (GANs), namely as ArtGAN to synthetically generate more challenging and complex images such as artwork that have abstract characteristics. This is in contrast to most of the current solutions that focused on generating natural images such as room interiors, birds, flowers and faces. The key innovation of our work is to allow back-propagation of the loss function w.r.t. the labels (randomly assigned to each generated images) to the generator from the discriminator. With the feedback from the label information, the generator is able to learn faster and achieve better generated image quality. Empirically, we show that the proposed ArtGAN is capable to create realistic artwork, as well as generate compelling real world images that globally look natural with clear shape on CIFAR-10.

Año de publicación:

2018

Keywords:

  • deep learning
  • Image synthesis
  • Generative Adversarial Networks

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Inteligencia artificial
  • Ciencias de la computación

Áreas temáticas:

  • Programación informática, programas, datos, seguridad