A mixed-integer conic programming formulation for computing the flexibility index under multivariate gaussian uncertainty


Abstract:

We present a methodology for computing the flexibility index when uncertainty is characterized using multivariate Gaussian random variables. Our approach computes the flexibility index by solving a mixed-integer conic program (MICP). This methodology directly characterizes ellipsoidal sets to capture correlations in contrast to previous methodologies that employ approximations. We also show that, under a Gaussian representation, the flexibility index can be used to obtain a lower bound for the so-called stochastic flexibility index (i.e., the probability of having feasible operation). Our results also show that the methodology can be generalized to capture different types of uncertainty sets.

Año de publicación:

2018

Keywords:

  • mixed-integer
  • UNCERTAINTY
  • Ellipsoidal
  • Flexibility

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Principios generales de matemáticas
  • Análisis numérico
  • Álgebra