Assessing RBFN-based software cost estimation models
Abstract:
This paper is concerned with the design of the neural networks approach, especially Radial Basis Function Neural (RBFN) networks, for software effort estimation models. The study firstly focuses on the construction of the RBFN middle layer composed of receptive fields, using two clustering techniques: hard C-means and fuzzy C-means. Thereafter, we evaluate and compare the performance of effort estimation models that use an RBFN construction-based either on hard or fuzzy C-means. This study uses the ISBSG dataset and confirms the usefulness of an RBFN-based on fuzzy C-means for software effort estimation.
Año de publicación:
2013
Keywords:
- RBF neural networks
- Isbsg dataset
- Hard and fuzzy c-means
- Software Cost estimation
Fuente:
scopus
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ingeniería de software
- Software
- Software
Áreas temáticas:
- Programación informática, programas, datos, seguridad