Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble combinations and pbkp_redictions


Abstract:

This paper reports on a project to compare pbkp_redictions from a range of catchment models applied to a mesoscale river basin in central Germany and to assess various ensemble pbkp_redictions of catchment streamflow. The models encompass a large range in inherent complexity and input requirements. In approximate order of decreasing complexity, they are DHSVM, MIKE-SHE, TOPLATS, WASIM-ETH, SWAT, PRMS, SLURP, HBV, LASCAM and IHACRES. The models are calibrated twice using different sets of input data. The two pbkp_redictions from each model are then combined by simple averaging to produce a single-model ensemble. The 10 resulting single-model ensembles are combined in various ways to produce multi-model ensemble pbkp_redictions. Both the single-model ensembles and the multi-model ensembles are shown to give pbkp_redictions that are generally superior to those of their respective constituent models, both during a 7-year calibration period and a 9-year validation period. This occurs despite a considerable disparity in performance of the individual models. Even the weakest of models is shown to contribute useful information to the ensembles they are part of. The best model combination methods are a trimmed mean (constructed using the central four or six pbkp_redictions each day) and a weighted mean ensemble (with weights calculated from calibration performance) that places relatively large weights on the better performing models. Conditional ensembles, in which separate model weights are used in different system states (e.g. summer and winter, high and low flows) generally yield little improvement over the weighted mean ensemble. However a conditional ensemble that discriminates between rising and receding flows shows moderate improvement. An analysis of ensemble pbkp_redictions shows that the best ensembles are not necessarily those containing the best individual models. Conversely, it appears that some models that pbkp_redict well individually do not necessarily combine well with other models in multi-model ensembles. The reasons behind these observations may relate to the effects of the weighting schemes, non-stationarity of the climate series and possible cross-correlations between models. Crown Copyright © 2008.

Año de publicación:

2009

Keywords:

  • Single-model ensembles
  • Multi-model ensembles
  • UNCERTAINTY
  • catchment modelling
  • land use change
  • Ensemble combination

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Hidrología
  • Hidráulica
  • Hidrología

Áreas temáticas:

  • Ingeniería sanitaria
  • Economía de la tierra y la energía