A necessary and sufficient condition for the controllability of linear systems in Hilbert spaces and applications


Abstract:

As we have announced in the title of this work, we show that a broad class of linear evolution equations is exactly controllable. This class is represented by the following infinite-dimensional linear control system: z = Az + Bu(t), t > 0, z ∈ Z, u(t) ∈ U, where Z, U are Hilbert spaces, the control function u belong to L2 (0, t1; U), t1 > 0, B ∈ L (U, Z) and A generates a strongly continuous semigroup operator T (t) according to Pazy. We give a necessary and sufficient condition for the exact controllability of this system and apply this result to a linear controlled damped wave equation. © The author 2007. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

Año de publicación:

2008

Keywords:

  • damped wave equation
  • exact controllability
  • Linear evolution equations

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Teoría de control
  • Sistema de control

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería
  • Ciencias de la computación

Contribuidores: