A neural approximation to the explicit solution of constrained linear MPC


Abstract:

The solution to constrained linear model pbkp_redictive control (MPC) problems can be pre-computed off-line in an explicit form as a piecewise affine (PWA) state feedback law defined on polyhedral regions of the state space. Even though real-time optimization is avoided, implementation of the PWA state-feedback law may still require a significant amount of computation due to the problem of determining which polyhedral region the state lies in. In this paper, a neural network approach to this problem is investigated.

Año de publicación:

2003

Keywords:

  • Approximation
  • Neural networks
  • Constrained linear control
  • Model Pbkp_redictive Control
  • Explicit solution

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Algoritmo
  • Teoría de control

Áreas temáticas:

  • Métodos informáticos especiales