A neural approximation to the explicit solution of constrained linear MPC
Abstract:
The solution to constrained linear model pbkp_redictive control (MPC) problems can be pre-computed off-line in an explicit form as a piecewise affine (PWA) state feedback law defined on polyhedral regions of the state space. Even though real-time optimization is avoided, implementation of the PWA state-feedback law may still require a significant amount of computation due to the problem of determining which polyhedral region the state lies in. In this paper, a neural network approach to this problem is investigated.
Año de publicación:
2003
Keywords:
- Approximation
- Neural networks
- Constrained linear control
- Model Pbkp_redictive Control
- Explicit solution
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
- Teoría de control
Áreas temáticas:
- Métodos informáticos especiales