Assessment of ventricular repolarization instability in terms of T-wave alternans induced by head-down bed-rest immobilization


Abstract:

Objective: To assess the effects of different durations of simulated microgravity exposure on ventricular repolarization (VR) in terms of T-wave alternans (TWA) as well as to test whether an increase in VR heterogeneity could be detected once normal gravity was restored. Approach: A total of 63 healthy volunteers were recruited in several head-down bed-rest (HDBR) experiments in the context of the European Space Agency bed-rest strategy. TWA is evaluated during the night period using ambulatory ECG recordings, before, during and after long-(60 d), mid-(21 d) and short-(5 d) duration HDBR by the long-Term averaging technique. Main results: 5-21 d of exposure to simulated microgravity by means of the HDBR model do not lead to a significant increase of cardiac electrical instability in healthy myocardial substrates up to the point of eliciting TWA on the surface ECG. However, TWA indices increased after long-Term HDBR exposure, once normal gravity was re-established, indicative of incipient electrical instability on VR at the conclusion of 60 d of HDBR. Significance: The results of this work underline the importance of focusing future research on immediate effects after long-Term microgravity exposure, both simulated by HDBR or from space mission scenarios, once partial gravity conditions are re-established. A deeper insight in the understanding of human body reactions in these scenarios results crucial in the design of future long-duration spaceflight missions, to mitigate any potential risk that can limit astronaut's performance.

Año de publicación:

2019

Keywords:

  • Microgravity
  • Ventricular repolarization (VR)
  • Head-down bed-rest (HDBR)
  • T-wave alternans (TWA)
  • electrocardiogram (ECG)
  • Cardiac Arrhythmias

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Enfermedad cardiovascular
  • Fisiología

Áreas temáticas:

  • Fisiología humana