Association of ecotones with relative elevation and fire in an upland Florida landscape


Abstract:

Question: What are the importance of elevation and fire in maintaining ecotones of Florida scrub assemblages along a gradual topographic gradient? Location: Archbold Biological Station (ABS), 12 km south of Lake Placid, Florida, USA. Methods: Vegetation cover of upland Florida shrublands was quantified using the line-intercept method along 20 transects traversing similar elevation gradients, stratified by time since fire (TSF). We objectively identified shrubland ecotones using a split moving windows boundary analysis (SMW) with three different window widths. Non-metric multidimensional scaling ordination was used to determine relationships among plant assemblages defined by SMW. Results: We located up to four ecotones per transect, the majority of which were wide, highly heterogeneous zones. Relative elevation controlled the distribution of plant assemblages in upland Florida shrublands. Ecotones in shrublands > 30 years TSF had relatively low dissimilarity values in SMW, indicating that previously discrete plant assemblages with longer TSF were becoming more similar with time. Conclusions: Split Moving Windows (SMW) analysis identified ecotones relatively well although patches generated by oak clonal growth were sometimes identified as ecotones. Fire suppression caused ecotones to become more diffuse, suggesting that without fire at least every 30 years, discrete plant assemblages within upland Florida shrublands will be more continuous. © IAVS; Opulus Press.

Año de publicación:

2006

Keywords:

  • Vegetation change
  • Boundary
  • Split moving window
  • Monte carlo simulation
  • Ordination
  • Dissimilarity coefficient
  • Landscape gradient
  • Transition zone
  • Time since fire

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ecología
  • Ecología
  • Ecología

Áreas temáticas:

  • Agricultura y tecnologías afines
  • Economía de la tierra y la energía
  • Ecología