A new approach for Pneumonia diagnosis using Convolutional Neural Networks


Abstract:

Convolutional Neural Networks (CNN) can be used as an efficient tool for detecting diseases between different types of medical imaging in a fast and reliable way, so that the article focuses on pneumonia disease, as yearly about 2.56 million people die in consequence of this illness. This paper illustrate the importance of data preprocessing as an effective approach for producing better results since raw data repercute in the training time, in consequence, it require more computational time to complete a determined machine learning problem. One of the main focal point is to introduce a novel and effective method to work with large amount of data and how it can be preprocessed for getting almost ideal results with a minimal lost of information due preprocessing. As the main result, the solution mentioned can help radiology and medical personnel to diagnose X-Ray images. Regarding the dataset, its name is Chest X-Ray Image Dataset, it's a public dataset of Kaggle and contains 5856 JPEG images organized in three directories. As future work, this model can be used to work with other types of Medical Images due to its adaptability.

Año de publicación:

2020

Keywords:

  • Artificial neuron
  • Preprocessing
  • pooling
  • Train
  • TEST
  • flatten
  • epoch

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Aprendizaje automático
  • Ciencias de la computación

Áreas temáticas:

  • Ciencias de la computación