Asymptotics at infinity of solutions for p-Laplace equations in exterior domains


Abstract:

Let 1 < p < N, and u be a nonnegative solution of - Δp u = f (x, u) on RN {set minus} over(B1, -) where f behaves like | x |- l uq near | x | = ∞ and u = 0, for some constants q ≥ 0 and l ∈ R. We obtain asymptotic decay estimates for u. In particular, our results complete the 'sublinear case' q < p - 1. A related analysis is carried out for systems like - Δp u = f (x, v), - Δp v = g (x, u), where p = 2 corresponds to a Hamiltonian system. In this way we extend and improve some known results of Mitidieri and Pohozaev, Bidaut-Véron and Pohozaev, and other authors. Our proofs use tools such as Harnack inequality, the Maximum Principle, Liouville Theorems and blow-up arguments. © 2008.

Año de publicación:

2008

Keywords:

  • Entire solution
  • Nonlinear elliptic equation
  • p-Laplace
  • Asymptotics
  • Nonlinear System

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ecuación diferencial parcial
  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Análisis