Atomic scale study of corrugating and anticorrugating states on the bare Si(1 0 0) surface


Abstract:

In this article, we study the origin of the corrugating and anticorrugating states through the electronic properties of the Si(1 0 0) surface via a low-temperature (9 K) scanning tunneling microscope (STM). Our study is based on the analysis of the STM topographies corrugation variations when related to the shift of the local density of states (LDOS) maximum in the [1 1 0] direction. Our experimental results are correlated with numerical simulations using the density-functional theory with hybrid HeydScuseriaErnzerhof (HSE06) functional to simulate the STM topographies, the projected density of states variations at different depths in the silicon surface as well as the three dimensional partial charge density distributions in real-space. This work reveals that the Si(1 0 0) surface exhibits two anticorrugating states at +0.8 and +2.8V that are associated with a phase shift of the LDOS maximum in the unoccupied states STM topographies. By comparing the calculated data with our experimental results, we have been able to identify the link between the variations of the STM topographies corrugation and the shift of the LDOS maximum observed experimentally. Each surface voltage at which the STM topographies corrugation drops is defined as anticorrugating states. In addition, we have evidenced a sharp jump in the tunnel current when the second LDOS maximum shift is probed, whose origin is discussed and associated with the presence of Van Hove singularities.

Año de publicación:

2015

Keywords:

  • density functional theory
  • DFT simulation
  • anticorrugating state
  • HSE
  • silicon surface
  • Scanning tunneling microscopy

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencia de materiales
  • Ciencia de materiales

Áreas temáticas:

  • Química física
  • Ingeniería y operaciones afines
  • Física