A new paradigm for uncertain knowledge representation by Plausible Petri nets
Abstract:
This paper presents a new model for Petri nets (PNs) which combines PN principles with the foundations of information theory for uncertain knowledge representation. The resulting framework has been named Plausible Petri nets (PPNs). The main feature of PPNs resides in their efficiency to jointly consider the evolution of a discrete event system together with uncertain information about the system state using states of information. The paper overviews relevant concepts of information theory and uncertainty representation, and presents an algebraic method to formally consider the evolution of uncertain state variables within the PN dynamics. To illustrate some of the real-world challenges relating to uncertainty that can be handled using a PPN, an example of an expert system is provided, demonstrating how condition monitoring data and expert opinion can be modelled.
Año de publicación:
2018
Keywords:
- information theory
- Petri nets
- Knowledge Representation
- Expert systems
Fuente:
![scopus](/_next/image?url=%2Fscopus.png&w=128&q=75)
Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Inteligencia artificial
- Ciencias de la computación
- Ciencias de la computación
Áreas temáticas:
- Programación informática, programas, datos, seguridad
- Métodos informáticos especiales
- Biblioteconomía y Documentación informatica