Automatic classification of OER for metadata quality assessment
Abstract:
Open Educational Resources (OER) are educational materials that are available in different repositories such as Merlot, SkillsCommons, MIT OpenCourseWare, etc. The quality of metadata facilitates the search and discovery tasks of educational resources. This work evaluates the metadata quality of 4142 OER from SkillsCommons. We applied supervised machine learning algorithms (Support Vector Machine and Random Forest Classifier) for automatic classification of two metadata: description and material type. Based on our data and model, performances of a first classification effort is reported with the accuracy of 70%.
Año de publicación:
2022
Keywords:
- Machine learning
- accuracy
- random forest
- metadata quality
- OER
Fuente:
scopus
google
Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Ciencias de la computación
Áreas temáticas:
- Funcionamiento de bibliotecas y archivos