Automatic design of aperture filters using neural networks applied to ocular image segmentation


Abstract:

Aperture filters are image operators which combine mathematical morphology and pattern recognition theory to design windowed classifiers. Previous works propose designing and representing such operators using large decision tables and classic linear pattern classifiers. These approaches demand an enormous computational cost in order to solve real image problems. The current work presents a new method to automatically design Aperture filters for color and grayscale image processing. This approach consists of designing a family of Aperture filters using artificial feed-forward neural networks. The resulting Aperture filters are combined into a single one using an ensemble method. The performance of the proposed approach was evaluated by segmenting blood vessels in ocular images of the DRIVE database. The results show the suitability of this approach: It outperforms window operators designed using neural networks and logistic regression as well as Aperture filters designed using logistic regression and support vector machines.

Año de publicación:

2014

Keywords:

  • mathematical morphology
  • Aperture filters
  • pattern recognition
  • IMAGE PROCESSING
  • Neural networks
  • Ensemble of Classifiers

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Red neuronal artificial
  • Ciencias de la computación

Áreas temáticas:

  • Métodos informáticos especiales
  • Medicina y salud
  • Física aplicada