Automatic extraction and aggregation of diseases from clinical notes


Abstract:

Clinical notes provide medical information about the patient’s health. The automatic extraction of this information is relevant in order to analyze patterns for grouping patients with similar characteristics. In this paper, we used MetaMap to extract diseases present in 412 discharge summaries of obesity patients. The UMLS intra-source vocabulary relationships were used to make automatic aggregation of diseases. The results showed an average of 0.81 for recall, 0.92 for precision, and 0.84 for F-score. Finally, with the diseases extracted and aggregated three sub-graphs were identified; they correspond to patients with sleep apnea, those with heart diseases, and those with communicable diseases.

Año de publicación:

2018

Keywords:

  • UMLS
  • Clinical notes
  • Clustering graphs
  • MetaMap

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Laboratorio médico
  • Minería de datos

Áreas temáticas de Dewey:

  • Medicina y salud
  • Farmacología y terapéutica
  • Enfermedades
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 3: Salud y bienestar
  • ODS 17: Alianzas para lograr los objetivos
  • ODS 9: Industria, innovación e infraestructura
Procesado con IAProcesado con IA

Contribuidores: