Automatic motion segmentation via a cumulative kernel representation and spectral clustering


Abstract:

Dynamic or time-varying data analysis is of great interest in emerging and challenging research on automation and machine learning topics. In particular, motion segmentation is a key stage in the design of dynamic data analysis systems. Despite several studies have addressed this issue, there still does not exist a final solution highly compatible with subsequent clustering/classification tasks. In this work, we propose a motion segmentation compatible with kernel spectral clustering (KSC), here termed KSC-MS, which is based on multiple kernel learning and variable ranking approaches. Proposed KSC-MS is able to automatically segment movements within a dynamic framework while providing robustness to noisy environments.

Año de publicación:

2017

Keywords:

  • Variable ranking
  • Time-varying data
  • Motion segmentation
  • Kernel spectral clustering

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Visión por computadora
  • Ciencias de la computación
  • Simulación por computadora

Áreas temáticas:

  • Métodos informáticos especiales
  • Economía financiera
  • Física aplicada