Automatic segmentation of exudates in ocular images using ensembles of aperture filters and logistic regression


Abstract:

Hard and soft exudates are the main signs of diabetic macular edema (DME). The segmentation of both kinds of exudates generates valuable information not only for the diagnosis of DME, but also for treatment, which helps to avoid vision loss and blindness. In this paper, we propose a new algorithm for the automatic segmentation of exudates in ocular fundus images. The proposed algorithm is based on ensembles of aperture filters that detect exudate candidates and remove major blood vessels from the processed images. Then, logistic regression is used to classify each candidate as either exudate or non-exudate based on a vector of 31 features that characterize each potensial lesion. Finally, we tested the performance of the proposed algorithm using the images in the public HEI-MED database. © Published under licence by IOP Publishing Ltd.

Año de publicación:

2013

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Conference Object

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Visión por computadora
    • Laboratorio médico

    Áreas temáticas:

    • Métodos informáticos especiales