Automatic skin lesion boundary segmentation using deep learning convolutional networks with weighted cross entropy
Abstract:
An automatic segmentation of skin lesions from the dermoscopy images is a key procedure to accurately diagnose different skin diseases. In this study, recent state-of-the-art deep learning segmentation models which are U-Net, SegNet, FCN, and FrCN utilizing weighted cross entropy as a loss function are adapted and utilized. We evaluated all these different models using the ISIC 2018 segmentation challenge dataset. The U-Net, SegNet, FCN, and FrCN methods achieve average threshold Jaccard index of 54.4%, 69.5%, 74.7%, and 74.6% on the online validation dataset, respectively. These segmentation methods generate fine boundaries of the segmented lesions.
Año de publicación:
2018
Keywords:
Fuente:

Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
Áreas temáticas:
- Programación informática, programas, datos, seguridad