Axial-flow-induced vibration experiments on cantilevered rods for nuclear reactor applications
Abstract:
Axial-flow-induced vibration has been experimentally investigated with clamped-free cantilevered cylindrical rods confined in a tube and subjected to axial water flow directed from the rod free-end towards the clamped end: a simplified configuration relevant for water-cooled nuclear reactor cores. Non-contact optical techniques have been used to simultaneously detect the rods vibration and the flow field around the vibrating rods free-end. The source of excitation is turbulent buffeting at low flow velocity, while a movement induced excitation component is present at large flow velocities. The rods flow-induced vibration consists of a fuzzy period-1 motion: a periodic (period-1) motion with a chaotic component that increases in relative importance as the flow velocity is increased. The experimental data provided here are particularly suited for numerical fluid-structure model development and benchmarking, as they combine a rich fluid-structure multi-physics interaction with a relatively simple configuration and include both the flow field and the mechanical response of the vibrating rods.
Año de publicación:
2018
Keywords:
- Cantilever rod
- Fluid-structure interaction
- Benchmark experiments
- Nuclear reactor
- Axial flow
- Flow-induced vibration
Fuente:


Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Ingeniería mecánica
- Ingeniería mecánica
Áreas temáticas:
- Física aplicada