BCI system using a novel processing technique based on electrodes selection for hand prosthesis control


Abstract:

This work proposes an end-to-end model architecture, from feature extraction to classification using an Artificial Neural Network. The feature extraction process starts from an initial set of signals acquired by electrodes of a Brain-Computer Interface (BCI). The proposed architecture includes the design and implementation of a functional six Degree-of-Freedom (DOF) prosthetic hand. A Field Programmable Gate Array (FPGA) translates electroencephalography (EEG) signals into movements in the prosthesis. We also propose a new technique for selecting and grouping electrodes, which is related to the motor intentions of the subject. We analyzed and predicted two imaginary motor-intention tasks: opening and closing both fists and flexing and extending both feet. The model implemented with the proposed architecture showed an accuracy of 93.7% and a classification time of 8.8y«s for the FPGA. These results present the feasibility to carry out BCI using machine learning techniques implemented in a FPGA card.

Año de publicación:

2021

Keywords:

  • Embedded Systems
  • Neural networks
  • Bio-signals analysis
  • Brain computer interface
  • Fpga

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso abierto

Áreas de conocimiento:

    Áreas temáticas de Dewey:

    • Física aplicada
    Procesado con IAProcesado con IA

    Objetivos de Desarrollo Sostenible:

    • ODS 3: Salud y bienestar
    • ODS 10: Reducción de las desigualdades
    • ODS 9: Industria, innovación e infraestructura
    Procesado con IAProcesado con IA