A nonsmooth trust-region method for locally lipschitz functions with application to optimization problems constrained by variational inequalities
Abstract:
We propose a general trust-region method for the minimization of nonsmooth and nonconvex, locally Lipschitz continuous functions that can be applied, e.g., to optimization problems constrained by elliptic variational inequalities. The convergence of the considered algorithm to Cstationary points is verified in an abstract setting and under suitable assumptions on the involved model functions. For a special instance of a variational inequality constrained problem, we are able to properly characterize the Bouligand subdifferential of the reduced cost function, and, based on this characterization result, we construct a computable trust-region model which satisfies all hypotheses of our general convergence analysis. The article concludes with numerical experiments that illustrate the main properties of the proposed algorithm.
Año de publicación:
2020
Keywords:
- Stationarity conditions
- Bouligand subdifferential
- Trust-region methods
- Optimal Control
- Nonsmooth optimization
- Optimization with variational inequality constraints
Fuente:
Tipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Probabilidades y matemática aplicada
- Gestión y servicios auxiliares
- Dirección general