Ballistic impact response of laminated hybrid materials made of 5086-H32 aluminum alloy, epoxy and Kevlar® fabrics impregnated with shear thickening fluid
Abstract:
The ballistic impact behavior of hybrid composite laminates synthesized for armor protection was investigated. The hybrid materials, which consist of layers of aluminum 5086-H32 alloy, Kevlar® 49 fibers impregnated with shear thickening fluid (STF) and epoxy resin were produced in different configurations using hand lay-up technique. The hybrid materials were impacted by projectiles (ammunitions of 150 g power-point) fired from a rifle Remington 7600 caliber 270 Winchester to strike the target at an average impact velocity and impact energy of 871 m/s and 3687 J, respectively. The roles of the various components of the hybrid materials in resisting projectile penetration were evaluated in order to determine their effects on the overall ballistic performance of the hybrid laminates. The effects of hybrid material configuration on energy dissipation during ballistic impacts were investigated in order to determine a …
Año de publicación:
2016
Keywords:
Fuente:
Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Material compuesto
- Ciencia de materiales
- Ciencia de materiales
Áreas temáticas:
- Ingeniería y operaciones afines