Bayes clustering operators for known random labeled point processes


Abstract:

There is a widespread belief that clustering is inherently subjective. To quote A. K. Jain, 'As a task, clustering is subjective in nature. The same dataset may need to be partitioned differently for different purposes.' One is then left with a number of questions: Where do clustering algorithms account for statistical properties of the sampling procedure? How can one address the ability of a clusterer to make inferences without a definition of its pbkp_redictive capacity? This work develops a probabilistic theory of clustering that fully parallels the well-developed Bayes decision theory for classification, making it possible to address these questions and transform clustering from a subjective activity to an objective operation. © 2013 IEEE.

Año de publicación:

2013

Keywords:

    Fuente:

    scopusscopus
    googlegoogle

    Tipo de documento:

    Conference Object

    Estado:

    Acceso restringido

    Áreas de conocimiento:

    • Aprendizaje automático
    • Inferencia bayesiana
    • Optimización matemática

    Áreas temáticas:

    • Ciencias de la computación