Bidirectional Power Sharing for DC Microgrid Enabled by Dual Active Bridge DC-DC Converte. Energies 2021, 14, 404


Abstract:

Currently, high-performance power conversion requirements are of increasing interest in microgrid applications. In fact, isolated bidirectional dc-dc converters are widely used in modern dc distribution systems. The dual active bridge (DAB) dc-dc converter is identified as one of the most promising converter topology for the mentioned applications, due to its benefits of high power density, electrical isolation, bidirectional power flow, zero-voltage switching, and symmetrical structure. This study presents a power management control scheme in order to ensure the power balance of a dc microgrid in stand-alone operation, where the renewable energy source (RES) and the battery energy storage (BES) unit are interfaced by DAB converters. The power management algorithm, as introduced in this work, selects the proper operation of the RES system and BES system, based on load/generation power and state-of-charge of the battery conditions. Moreover, a nonlinear robust control strategy is proposed when the DAB converters are in voltage-modecontrol in order to enhance the dynamic performance and robustness of the common dc-bus voltage, in addition to overcoming the instability problems that are caused by constant power loads and the dynamic interactions of power electronic converters. The simulation platform is developed in MATLAB/Simulink, where a photovoltaic system and battery system are selected as the typical RES and BES, respectively. Assessments on the performance of the proposed control scheme are conducted. Comparisons with the other control method are also provided.

Año de publicación:

2021

Keywords:

    Fuente:

    googlegoogle

    Tipo de documento:

    Other

    Estado:

    Acceso abierto

    Áreas de conocimiento:

    • Energía
    • Energía

    Áreas temáticas:

    • Física aplicada