Bifurcation techniques for stiffness identification of an impact oscillator
Abstract:
In this paper, a change in stability (bifurcation) of a harmonically excited impact oscillator interacting with an elastic constraint is used to determine the stiffness of constraint. For this purpose, detailed one- and two-parameter bifurcation analyzes of the impacting system are carried out by means of experiments and numerical methods. This study reveals the presence of codimension-one bifurcations of limit cycles, such as grazing, period-doubling and fold bifurcations, as well as a cusp singularity and hysteretic effects. Particularly, the two-parameter continuation of the obtained codimension-one bifurcations (including both period-doubling and fold bifurcations) indicates a strong correlation between the stiffness of the impacted constraint and the frequency at which a certain bifurcation appear. The undertaken approach may prove to be useful for condition monitoring of dynamical systems by identifying mechanical properties through bifurcation analysis. The theoretical predictions for the impact oscillator are verified by a number of experimental observations.
Año de publicación:
2016
Keywords:
- Stiffness identification
- bifurcation analysis
- Numerical continuation
- Impact oscillator
Fuente:
scopus
googleTipo de documento:
Article
Estado:
Acceso restringido
Áreas de conocimiento:
- Sistema no lineal
- Sistema no lineal
- Sistema no lineal
Áreas temáticas de Dewey:
- Ingeniería y operaciones afines
- Mecánica clásica
- Física
Objetivos de Desarrollo Sostenible:
- ODS 9: Industria, innovación e infraestructura
- ODS 12: Producción y consumo responsables
- ODS 8: Trabajo decente y crecimiento económico