Binary quadratic form: A solution to the set partitioning over GF(q)
Abstract:
Summary form only given, as follows. A general solution to the set-partitioning problem over GF(q) obtained by using the binary quadratic forms for bidimensional lattices is presented. From Fermat's results, genus and composition theorems, it is shown that, when the solution is relatively prime, the resultant fundamental set forms a Latin square and that the least-squared Euclidean distance between points belonging to the same coset is q.
Año de publicación:
1990
Keywords:
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Optimización matemática
- Optimización matemática
Áreas temáticas:
- Principios generales de matemáticas
- Álgebra
- Matemáticas