A novel smooth and discontinuous oscillator with strong irrational nonlinearities


Abstract:

In this paper, we propose a novel nonlinear oscillator with strong irrational nonlinearities having smooth and discontinuous characteristics depending on the values of a smoothness parameter. The oscillator is similar to the SD oscillator, originally introduced in Phys Rev E 69(2006). The equilibrium stability and the complex bifurcations of the unperturbed system are investigated. The bifurcation sets of the equilibria in parameter space are constructed to demonstrate transitions in the multiple well dynamics for both smooth and discontinuous regimes. The Melnikov method is employed to obtain the analytical criteria of chaotic thresholds for the singular closed orbits of homoclinic, homo-heteroclinic, cuspidal heteroclinic and tangent homoclinic orbits of the perturbed system. © Science China Press and Springer-Verlag Berlin Heidelberg 2012.

Año de publicación:

2012

Keywords:

  • Melnikov method
  • Irrational nonlinearity
  • Multiple well dynamics
  • singular closed orbits

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Sistema no lineal
  • Sistema no lineal
  • Sistema no lineal

Áreas temáticas:

  • Ciencias de la computación