A one-class generative adversarial detection framework for multifunctional fault diagnoses
Abstract:
In this article, fault diagnosis is of great significance for system health maintenance. For real applications, diagnosis accuracy suffers from unbalanced data patterns, where normal data are usually abundant than anomaly ones, leading to tremendous diagnosis obstacles. Therefore, it is challenging to use only normal data for fault diagnosis under this imbalanced condition. In addition, a single fault diagnosis model can only conduct one fault diagnosis task in most of cases. Accordingly, a one-class generative adversarial detection (OCGAD) framework based on semisupervised learning is proposed to learn one-class latent knowledge for dealing with multiple semisupervised fault diagnosis tasks, i.e., fault detection using only normal knowledge learning, novelty detection from unknown conditional data, and fault classification with unlabeled data. A bi-directional generative adversarial network (Bi-GAN) is first trained …
Año de publicación:
2021
Keywords:
Fuente:

Tipo de documento:
Other
Estado:
Acceso abierto
Áreas de conocimiento:
- Aprendizaje automático
- Algoritmo
Áreas temáticas de Dewey:
- Ciencias de la computación