A parametric quantile regression model for asymmetric response variables on the real line
Abstract:
In this paper, we introduce a novel parametric quantile regression model for asymmetric response variables, where the response variable follows a power skew-normal distribution. By considering a new convenient parametrization, these distribution results are very useful for modeling different quantiles of a response variable on the real line. The maximum likelihood method is employed to estimate the model parameters. Besides, we present a local influence study under different perturbation settings. Some numerical results of the estimators in finite samples are illustrated. In order to illustrate the potential for practice of our model, we apply it to a real dataset.
Año de publicación:
2020
Keywords:
- Quantile regression model
- Parametric inference
- Asymmetric data
- Skew-normal distributions
Fuente:


Tipo de documento:
Article
Estado:
Acceso abierto
Áreas de conocimiento:
- Estadísticas
- Optimización matemática
Áreas temáticas:
- Probabilidades y matemática aplicada