Bioremediation on a chip: A portable microfluidic device for efficient screening of bacterial biofilm with polycyclic aromatic hydrocarbon removal capacity


Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are pollutants of critical environmental and public health concern and their elimination from contaminated sites is significant for the environment. Biodegradation studies have demonstrated the ability of bacteria in biofilm conformation to enhance the biodegradation of pollutants. In this study, we used our newly developed microfluidic platform to explore biofilm development, properties, and applications of fluid flow, as a new technique for screening PAHs-degrading biofilms. The optimization and evaluation of the flow condition in the microchannels were performed through computational fluid dynamics (CFD). The formation of biofilms by PAHs-degrading bacteria Pseudomonas sp. P26 and Gordonia sp. H19, as pure cultures and co-culture, was obtained in the developed microchips. The removal efficiencies of acenaphthene, fluoranthene and pyrene were determined by HPLC. All the biofilms formed in the microchips removed all tested PAHs, with the higher removal percentages observed with the Pseudomonas sp. P26 biofilm (57.4% of acenaphthene, 40.9% of fluoranthene, and 28.9% of pyrene). Pseudomonas sp. P26 biofilm removed these compounds more efficiently than planktonic cultures. This work proved that the conformation of biofilms enhances the removal rate. It also provided a new tool to rapid and low-cost screen for effective pollutant-degrading biofilms.

Año de publicación:

2022

Keywords:

  • PAHs biodegradation
  • lab on a chip
  • Continuous flow
  • Degrading bacteria
  • Microbioreactor

Fuente:

scopusscopus
googlegoogle

Tipo de documento:

Article

Estado:

Acceso restringido

Áreas de conocimiento:

  • Microbiología
  • Microbiología
  • Ciencia ambiental

Áreas temáticas:

  • Ingeniería sanitaria
  • Microorganismos, hongos y algas
  • Ingeniería y operaciones afines