Brain Tumor Classification Using Principal Component Analysis and Kernel Support Vector Machine
Abstract:
Early diagnosis improves cancer outcomes by giving care at the most initial possible stage and is, therefore, an important health strategy in all settings. Gliomas, meningiomas, and pituitary tumors are among the most common brain tumors in adults. This paper classifies these three types of brain tumors from patients; using a Kernel Support Vector Machine (KSVM) classifier. The images are pre-processed, and its dimensionality is reduced before entering the classifier, and the difference in accuracy produced by using or not pre-processing techniques is compared, as well as, the use of three different kernels, namely linear, quadratic, and Gaussian Radial Basis (GRB) for the classifier. The experimental results showed that the proposed approach with pre-processed MRI images by using GRB kernel achieves better performance than quadratic and linear kernels in terms of accuracy, precision, and specificity.
Año de publicación:
2019
Keywords:
- IMAGE PROCESSING
- Brain tumor classification
- KSVM
Fuente:

Tipo de documento:
Conference Object
Estado:
Acceso restringido
Áreas de conocimiento:
- Aprendizaje automático
- Ciencias de la computación
- Laboratorio médico
Áreas temáticas:
- Enfermedades
- Fisiología humana
- Programación informática, programas, datos, seguridad